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We report on a search for second generation leptoquarks (�2) using a data sample corresponding

to an integrated luminosity of 110 pb�1 collected at the Collider Detector at Fermilab. We present

upper limits on the production cross section as a function of �2 mass, assuming that the leptoquarks

are produced in pairs and decay into a muon and a quark with branching ratio �. Using the Next-

to-Leading order calculation, we extract a lower mass limit of M�2
> 202(160) GeV=c2 at 95%

con�dence level for scalar leptoquarks with �=1(0.5).
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Leptoquarks are hypothetical bosons which carry both

baryon and lepton quantum numbers and mediate in-

teractions between quarks and leptons. They appear in

many extensions to the Standard Model, e.g. GUT, su-

perstring, horizontal symmetry, compositeness or techni-

color [1]. Leptoquarks which combine quarks and leptons

of di�erent generations result in avor changing neutral

currents, which are known to be highly suppressed [2].

While these FCNC constraints do not exclude such lep-

toquarks, they restrict them to very high masses. For

example, in the Pati-Salam model [3], the masses are ex-

pected in the multi-TeV range, and indirect searches for

such leptoquarks have been made [4]. For this search, we

assume that the leptoquarks couple only to leptons and

quarks of the same generation. This leads to the classi-

�cation of leptoquarks of three generations, denoted as

�i, i = 1; 2; 3 in this report.

In pp collisions, leptoquarks can be pair-produced by

gluon-gluon fusion or q�q annihilation [5]. The contribu-

tion to the production rate from direct �ql coupling is

suppressed relative to the dominant QCD mechanism-

s [5]. The coupling strength to gluons is determined

by the color charges of the particles, and is model-

independent in the case of scalar leptoquarks. The pro-

duction of vector leptoquark pairs is also possible. How-

ever, vector leptoquarks have model-dependent trilinear

and quadratic couplings to the gluon �eld. In this case

the production cross section is generally orders of magni-

tude larger than for scalar leptoquarks. The acceptance

for vector and scalar leptoquark detection is similar, re-

sulting in much more stringent limits on the vector lep-

toquark mass.

In this analysis, we report on a direct search for pair

produced second generation scalar leptoquarks. The pos-

sible decay channels are:

�2 ! q2�
�; branching ratio �

�2 ! q2��; branching ratio 1� � (1)

where � is the branching ratio to charged lepton de-

cay, and q2 is a second generation quark (c, s). Our

search for �2 production is based on events having a

topology including two muons and at least two jets

(�2�2 ! �+��jj).

A previous CDF study [6] excluded M�2
<

131(96) GeV=c2, for � = 1:0(0:5) using an integrated

luminosity of 19 pb�1. A limit has also been published

by D; [7], which excludes M�2
< 119(89) GeV/c2 for

� = 1(0:5). Searches at LEP-1 have excluded leptoquarks

with masses below 45 GeV=c2 independent of � [8]. Here

we present a new limit using an integrated luminosity

110 pb�1 collected during the 1992-93 and 1994-95 Teva-

tron runs, including the 19 pb�1 of previous CDF study.

Searches have also been made for �rst and third genera-

tion leptoquark production at the Tevatron [9], LEP [8]

and HERA [10]. The H1 and ZEUS experiments at HER-

A have reported the observation of an excess of events at

high Q2 [13]. The interpretation of the excess as the pro-
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duction of a �rst generation leptoquark has been ruled

out for large � by the Tevatron results [9].

The CDF detector is described in full detail else-

where [12]. Here we only mention the detector subsys-

tems that are important in this analysis. The momenta

of muons are measured in the Central Tracking Cham-

ber (CTC), a 2.76 m diameter cylindrical drift chamber.

It is surrounded by a 1.4 T super-conducting solenoidal

magnet, covering a pseudo-rapidity (�) range up to 1.1,

which allows precision measurements of the transverse

momenta (pT ) of charged particles. Inside the CTC a

vertex tracking chamber (VTX) allows event vertex re-

construction using tracks over the range j�j < 3:25. Jets

are detected by the calorimeters, which are divided into a

central barrel (j�j < 1:1), end plugs (1:1 < j�j < 2:4), and

forward/backward modules (2:4 < j�j < 4:2). Outside

the calorimeters, Central Muon drift chambers (CMU)

in the region j�j < 0:6 provide muon identi�cation. Out-

side the CMU lie the Central Muon Upgrade chambers

(CMP), with additional steel between the CMU and CM-

P detectors that reduces the background from hadrons in

the muon sample. The region of 0:6 < j�j < 1:0 is covered

by the Central Muon Extension (CMX) chambers.

We use the PYTHIA Monte Carlo generator [14] with

the CTEQ4M parton distribution functions [15] and

the renormalization and factorization scales de�ned as

Q2 = p2T , together with the CDF detector simulation

package, to study the detailed properties of the signal

for �2 masses between 100 and 240 GeV=c2. The signal

selection criteria are set according to the kinematic dis-

tributions (e.g. the pT of the muons and ET of the jets)

of decay products determined by Monte Carlo studies,

optimised to eliminate the background with a minimal

loss of signal events [11].

We select events from several di�erent central single-

muon triggers [12] with pT threshold of 9 or 12 GeV/c.

From these events an exclusive dimuon sample is se-

lected by requiring events with two muons satisfying

pT > 30 GeV=c (�1) and pT > 20 GeV=c (�2). One of

the muons is required to have a track from the CTC

that matches with a stub in the �ducial region of the

central muon detectors (within 2 cm for CMU, and 5

cm for CMU/CMP). The muon satisfying this criterion

is de�ned as a 'tight' muon. The other muon can be

either a tight muon or a 'loose' muon. A muon is de-

�ned as a CTC track that leaves a minimum ionizing sig-

nal in the calorimeter. Minimum ionizing requirements

are < 2 GeV of electromagnetic energy and < 6 GeV of

hadronic energy deposited in the calorimeter tower tra-

versed by the track. To ensure good track quality, the

track is required to traverse at least 75% of the CTC in

the radial direction, and be matched to an interaction

vertex determined by the VTX to better than 5.0 cm in

the Z direction. Both muons are required to be isolated,

de�ned as I < 2 GeV, where I is the sum of transverse

energies of all calorimeter towers (excluding the one tra-
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versed by the muon), within a cone of �R = 0:4 around

the direction of the muon, where �R =
p
(��)2 + (��)2

and � is the azimuthal angle.

The total dimuon identi�cation e�ciency, averaged

over the data sample, lies between 79% at M(�2) =

100 GeV/c2 and 74.5% at M(�2) = 240 GeV/c2, with

the dependence on mass being due to the e�ciency of the

minimum ionizing requirement. The combined average i-

denti�cation and trigger e�ciency is approximately 70%

over the mass range 100 < M(�2) < 240 GeV/c2.

From this high-pT dimuon event sample, we require� 2

jets with E
(1)
T > 30 GeV and E

(2)
T > 15 GeV, respective-

ly. Jets are reconstructed by an algorithm using a �xed

cone in � � � space. A detailed description of the algo-

rithm can be found in Ref. [16]. For this analysis a cone

of 0.7 is used. Both jets are required to be reconstructed

in the region j�j < 2:4. Jet energy corrections, due to

the calorimeter non-linearity, energy deposited outside

the jet cone, underlying energy from other interactions,

and the detector geometrical dependence, are applied to

determine the �� jet invariant mass. The Z0 and other

resonances such as the J= or � are removed by reject-

ing events with a dimuon invariant mass in the regions

76 < M�� < 106 GeV=c2 and M�� < 11 GeV=c2. After

applying these requirements, we are left with a sample of

11 events.

Cosmic rays can fake high-pT dimuon events; however

such muons take a �nite time to traverse the detector,

generally entering from the top of the detector and exit-

ing at the bottom. We use the hadronic calorimeter TDC

information and a measurement of the opening angle of

the two muons to reject cosmic ray events. None of the

11 selected events is identi�ed as a cosmic ray event.

The numbers of events surviving each selection crite-

rion are listed in Table I. A total of 11 events passing

the �nal selection are shown in Figure 1, plotted in the

muon-jet invariant mass plane (M1
�j v.s. M

2
�j). From t-

wo muons and two jets, there are two possible muon-jet

pairings. We choose the combination having the small-

est invariant mass di�erence to determine the leptoquark

mass for possible candidate events. The reconstructed

leptoquark candidates of a pair should have equal mass,

within the experimental mass resolution �r .

We therefore search for leptoquark candidates by s-

electing events in a 3�r mass resolution region of the

M1
�j vs. M

2
�j plane around any given mass, as shown in

Fig. 1. The mass resolution, estimated from Monte Car-

lo studies, depends on the event geometry and the total

event energy. Consequently, it varies with the leptoquark

mass. For example, the maximum values for the mass res-

olutions are �r(�2 = 120 GeV/c2) = 21:2 GeV/c2 and

�r(�2 = 240 GeV/c2) = 46:5 GeV/c2. The asymmetric

mass resolution (oval-shaped regions shown in Figure 1)

results primarily from the detector resolution, but also in-

cludes a small probability of misidentifying the jet when

additional jets exist in the collision, and cases for which
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a wrong muon-jet pairing combination is chosen.

The backgrounds for the �2 search include higher or-

der Drell-Yan processes, heavy avor decay (from bb or

tt in the dimuon channel), WW , or Z ! �+��. An ad-

ditional background results fromW plus multi-jet events

with a fake muon from energetic hadrons penetrating

the shielding to reach the muon chambers, or with a

hadron decay to a muon. These background process-

es are studied using relevant Monte Carlo events sam-

ples and actual data samples where possible. The major

background is from Drell-Yan processes (we expect � 12

events for 110 pb�1) for which the �nal state includes a

muon pair (Z0= ! �+��) plus two or more jets from

initial or �nal state radiation. There is a small contribu-

tion from tt (� 1:3 events). Other backgrounds are neg-

ligible due to large muon pT and jet ET requirements (bb

and Z ! �+��), muon isolation requirements (W plus

jets), and small cross section (WW ). The total estimat-

ed background is 14� 1:8 for a 110 pb�1 integrated lu-

minosity, before applying the mass requirement. This

mass requirement reduces the background substantially,

since in the background events the reconstructed muon-

jet invariant masses are not correlated. For example, we

have estimated the background contribution to be on-

ly 0.3 events for M(�2) = 200 GeV=c2 for the 110 pb�1

data sample.

In the �nal result, we do not apply a background sub-

traction procedure, giving the most conservative estimate

of the cross section limit. The number of expected events,

N , is given by

N = L � �2 � �(M�2
) � "total; (2)

where L is the total integrated luminosity of the sam-

ple, � is the decay branching ratio to the charged lepton

plus quark channel, �(M�2) is the cross section for a giv-

en mass, and "tot is the overall e�ciency. We evaluate

the factors entering the overall e�ciency as a function

of �2 mass using actual event samples where possible

and otherwise simulated event samples. As shown in Ta-

ble II, it increases monotonically with M(�2), from 9% at

M(�2) = 100 GeV=c2 to 22% at M(�2) = 240 GeV=c2.

Possible systematic uncertainties of the measured cross

section limit have been studied. The major source comes

from a limited understanding of the initial and �nal s-

tate gluon radiation. We have used Monte Carlo samples

with and without gluon radiation to determine the cross

section uncertainty due to this e�ect. The uncertainty

decreases as the �2 mass increases, and it is estimated

to be 10% for M(�2) = 160 GeV=c2. A systematic un-

certainty also results from the Q2 scale and the structure

functions used. We compute this e�ect by varying the Q2

scale between 1/4 and 4 of the default value (Q2 = p2T ),

and by using other structure functions (CTEQ2L [17]

and MRS(A) [18]). The jet energy scaling uncertain-

ty, which results from detector performance limitations

is determined by including a 10% energy uncertainty in
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the Monte Carlo reconstruction. Other sources of un-

certainty, resulting from the detector simulation and the

limitation of Monte Carlo statistics, are relatively small.

The uncertainty on the luminosity measurement is 7.2%.

The total systematic uncertainty varies with �2 mass,

and is computed to be 15% at M�2 = 120 GeV=c2 and

10% at M�2 = 240 GeV=c2, as listed in Table II.

We compute the 95% con�dence level (C.L.) limits on

the �(p�p! �2
��2)�

2, including systematic uncertainties

with no background subtraction, as a function of the lep-

toquark mass (see Table II and Figure 2). The cross

section limits for a given �2 mass do not depend on the

coupling �, and therefore the mass limit does not de-

pend on the choice of the theoretical model, but only

on �. A theoretical NLO cross section calculation [19]

is also shown in Figure 2), where the band represent-

ing the main uncertainty of the calculation coming from

the Q2 value. Comparing this calculation, a limit of

M�2
> 202(160) GeV=c2 for � = 1:0(0:5) is derived.
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Type of selection Number of events remaining

Total number of sample 30934
1st muon selection (tight cut) 6844

2nd muon selection (loose cut) 4153
2 jet cuts 937
Jet ET cut 64
Invariant Mass cut 11
Cosmic ray cut 11

TABLE I. The number of events surviving each cut, using
110 pb�1 of CDF data. The estimated total background from
Standard Model sources is 14� 1:8 events.

�2 mass (GeV=c2) 120 160 200 240

Total signal detection e�ciency,"tot 0.13 0.17 0.20 0.22
Systematic error on "tot 0.019 0.023 0.023 0.023
Number of candidate events 1 0 0 1
Estimated background 3.8 1.1 0.3 0.1
� (at 95% C.L.) in pb 0.34 0.16 0.13 0.19

TABLE II. Results for di�erent �2 masses with CDF inte-
grated luminosity of 110 pb�1. No background subtraction is
made in the cross section evaluation. The candidate satisfying
M(�2) > 200 GeV/c2 was previously published [6].

FIG. 1. Invariant mass M(�j) distribution for
events before the mass requirement. 11 candidate
events are displayed onM(�j)2 v.s.M(�j)1 plane. The
oval con�guration shows the limit of the mass re-
quirement for �2 masses between 100 to 240 GeV/c2.
M(�j)1 is the invariant mass with the higher pT muon,
while M(�j)2 is that with the lower pT one

β = 1

β = 0.5

%

FIG. 2. 95% C.L. cross section limit for �2 pro-
ductions for an integrated luminosity of 110 pb�1,
super-imposed on the NLO theoretical cross section
curves [17] for � = 0.5 and 1.0.
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